
ORIGINAL PAPER

Evolutionary diversification of Japanese Stomaphis aphids
(Aphididae, Lachninae) in relation to their host plant use
and ant association

Tetsuya Yamamoto1
& Mitsuru Hattori2 & Yoshiyuki Matsumoto3

& Shouhei Ueda4 & Takao Itino5

Received: 7 November 2019 /Revised: 25 February 2020 /Accepted: 2 March 2020
# The Author(s) 2020

Abstract
Phytophagous insects are among the most diverse of the earth’s organisms, and their diversification patterns and the driving
forces behind these have attracted considerable research interest. Host shifting to closely related plant species is thought to play an
important role in phytophagous insect diversification, but the extent to which other interactions such as mutualistic associations
affect diversification is not yet known. In this study, we reconstructed the molecular phylogeny of Japanese Stomaphis aphids and
determined whether host shifting or mutualistic association with different ant species could explain diversification in this aphid
genus. We analyzed 12 species of Stomaphis and grouped them into ten well-supported DNA lineages. Species in each lineage
used a single or a few host plant species, but were mutualistically associated with many ant species of the genus Lasius. This
result suggests that Stomaphis evolutionarily diversified primarily through host plant shifts. Interestingly, the reconstructed
phylogeny suggests that Stomaphis host shifts occasionally occurred between very distantly related host plant taxa (spanning
up to five plant orders). The dependence of Stomaphis on long-lasting Lasius ant colonies situated in temperate deciduous forests
where Lasius is the dominant ant genus may have led the aphids to shift to distantly related but spatially adjacent host tree species.
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Introduction

One of the goals of evolutionary biology is to understand the
factors and mechanisms that have led to species diversity on
the earth. Insects are among the most diverse taxa described
thus far, and phytophagous insects account for more than 40%
of all described insects (Grimaldi and Engel 2005). Therefore,
the patterns and driving forces of their diversification have
been studied extensively (Agosta 2006; Futuyma and
Agrawal 2009; Depa et al. 2017).

Phytophagous insects are hypothesized to have diversified
by ecological speciation through adaptation to different, often
closely related host plant species, followed by the interruption
of gene flow owing to disruptive selection. Many studies have
provided evidence supporting this hypothesis, both by
reconstructing phylogenies of phytophagous insects to exam-
ine the evolutionary diversification of their host plant use
(Funk et al. 1995; Peccoud et al. 2009) and by comparing host
preference and performance (e.g., growth rate) among host
lineages (Nosil et al. 2002; Matsubayashi et al. 2011, 2013;
Fujiyama et al. 2013). For example, Peccoud et al. (2009)
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assessed clonal lineages of the pea aphid, Acyrthosiphon
pisum, and found eight sympatric host lineages, each of which
was specialized to a different host plant species.

Interspecific interactions other than those with host plants
can also drive the diversification of phytophagous insects
(Pierce et al. 2002). For example, Depa et al. (2017) reported
that two sister aphid species diverged because of their associ-
ation with different ant species. Phytophagous insect diversi-
fication through interactions with organisms other than host
plants is still poorly understood; however, the relative impor-
tance of host plants and other organisms in structuring insect
evolutionary diversification needs to be elucidated.

Phytophagous aphids are highly specific to host plants;
99% of aphid species use a single specific plant species or a
few closely related plant species (Blackman and Eastop 1994;
Dixon 1998). Furthermore, even aphid species that appear to
be “generalists” may be genetically differentiated into differ-
ent host lineages, as in the case of A. pisum mentioned above
(Peccoud et al. 2009). Therefore, aphid diversity has generally
been attributed to adaptive diversification to different closely
related host plant species (Dixon 1998; Drès and Mallet
2002).

Aphids also establish mutualistic relationships with ants
by providing them with honeydew in return for protection
from natural enemies and hygienic services (Hölldobler
andWilson 1990; Stadler and Dixon 2005), and some aphid
traits have evolved owing to the selection pressure from at-
tending ants: for example, an anal plate shaped to hold hon-
eydew (Heie 1987; Kanturski et al. 2017), a long proboscis
and stylet (Shingleton et al. 2005), or a particular cuticular
hydrocarbon profile (Lang and Menzel 2011). In addition,
some aphid traits are plastically induced by the presence of
attending ants: for example, production of more and higher-
quality honeydew (Fischer andShingleton2001) or a smaller
flight apparatus (Yao 2012). These adaptations and the fact
that different ant species offer different degrees of protection
to the aphidswithwhich they associate (Novgorodova 2005)
suggest that adaptive diversification to particular ant species
might occur.

The genus Stomaphis is a group of large aphids having
about 4–7 mm of body length; they also have a long proboscis
and stylet, which, in adult females, may be up to twice the
body length (Brożek et al. 2015). Stomaphis aphids use this
long mouthpart to suck phloem sap from tree trunks. Thirty-
three species and four subspecies of Stomaphis have been
described worldwide, and most have been described as spe-
cific to a single plant species or genus (Blackman and Eastop
2019). However, the morphological classification of
Stomaphis may not accurately reflect the phylogenetic rela-
tionships within the genus Stomaphis; for example, Depa et al.
(2012) reported discrepancies between the molecular phylog-
eny of some Stomaphis species and their morphological
classification.

Globally, host plants used by aphids of the genus
Stomaphis belong to 13 families in seven orders, although
most aphid species usually specialize to a single or few closely
related plant species (Blackman and Eastop 2019). This huge
taxonomic breadth of host plant usage suggests that
Stomaphis aphids may have diversified through host plant
shifts, occasionally between very different taxa. Indeed,
European Stomaphis species comprise two sister mtDNA lin-
eages, each of which uses a different and distantly related host
plant species (Sapindales and Malpighiales; Depa and Mróz
2013), suggesting that diversification occurred by a host plant
shift.

Importantly, Stomaphis aphids interact with not only plants
but also ants, with which they have a mutualistic relationship.
The long mouthparts of Stomaphis aphids restrict their mobil-
ity, rendering it difficult for them to escape from their natural
enemies. Because Stomaphis aphids strongly depend on at-
tending ants for protection from predators and receiving hy-
gienic services, they cannot survive without ants (Lorenz and
Scheurer 1998). In at least one case, aphid diversification re-
sulted from such aphid–ant interaction; Depa et al. (2017)
reported that the sister species Stomaphis quercus and
S. wojciechowskii share the same host plant species, but each
maintains a mutualistic relationship with a different ant spe-
cies. Each aphid species has evolved morphological and eco-
logical characteristics suitable for interaction with its own
partner ant species. For example, a population of S. quercus
associa ted with ant species that is a par tner of
S. wojciechowskii acquires morphological characters same as
those of S. wojciechowskii. Such ant-related diversification in
Stomaphis aphids suggests that aphid–ant mutualism can lead
to the diversification of these phytophagous insects. However,
this phenomenon has been recognized in only these two
Stomaphis species, and whether this mode of diversification
occurs more generally in this genus is not yet known.

This study aimed to elucidate the influence of interactions
with host plants and associated ants on phylogenetic diversi-
fication in the genus Stomaphis. First, we reconstructed the
phylogeny of Stomaphis species in Japan from mitochondrial
and nuclear DNA sequences and then investigated the rela-
tionships between the phylogenetic lineages and host plant
utilization and ant association. The results suggested that di-
versification in Japanese Stomaphis aphids occurred through
interactions with host plants rather than with associated ants.

Methods

Field sampling

We discovered 160 Stomaphis aphid colonies at 34 sites in
Japan by searching for known host plants and/or by following
Lasius ant trails (Table S1). We considered all aphids on a
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single host plant to belong to a single colony. The aphids and
associated ants were collected from each host plant and stored
in 99.5% and 70% ethanol, respectively, at 4 °C before DNA
extraction and morphological identification.

Interspecific relationships

To clarify the correspondence between aphid phylogeny and
aphid interspecific interactions, we identified all host plants
and attending ant species. Host plants were identified on the
basis of leaf and stem morphology, and associated ant species
were identified on the basis of their mitochondrial COI se-
quences, because it is often difficult to identify Lasius ants
at the species level on the basis of morphology alone.
Protocols and primers for mitochondrial COI sequence anal-
yses of Lasius ants were referred from Maruyama et al.
(2008).

DNA extraction and sequencing of aphids

Total genomic DNA was extracted from a single aphid by
using a DNeasy Blood & Tissue Kit (Qiagen) following man-
ufacturer’s instructions.We targeted twomolecular markers—
mitochondrial cytochrome oxidase c subunit II (COII) and
exon of nuclear elongation factor 1α (EF-1α). The COII gene
was amplified using polymerase chain reaction (PCR) analy-
sis and Takara Tks Gflex DNA polymerase (Takara Bio,
Shiga, Japan) by using the PCR primer set mt2993+ (5′-
CATTCATATTCAGAATTACC-3′) and Eva-R (5′-GAGA
CCATTACTTGCTTTCAGTCATCT-3 ′; Brower and
Jeansonne 2004; Stern 1994). The EF-1α gene was amplified
using PCRwith Takara Ex Taq DNA polymerase (Takara Bio,
Shiga, Japan) by using the PCR primer set efs175 (5′-GGAA
ATGGGAAAAGGCTCCTTCAAGTAYGCYTGGG-3′) and
efa1082 (5′-ATGTGAGCAGTGTGGCAATCCAA-3′;
Normark 1999). The PCR temperature profile was 30 cycles
at 98 °C for 10 s, 50 °C for 10 s, and 72 °C for 60 s for COII
and 30 cycles at 98 °C for 10 s, 42 °C for 30 s, and 72 °C for
60 s for EF-1α. After amplification, the PCR product was
purified using ExoSap-IT reagent (USB; Cleveland, OH,
USA). Cycle sequencing reactions for both strands were per-
formed using a BigDye Terminator version 1.1 Cycle
Sequencing Kit (ABI, Weiterstadt, Germany) on an ABI
3130 Genetic Analyzer.

Phylogenetic analyses

The mitochondrial COII and EF-1α sequences of 589 bp
(COII) and 723 bp (EF-1α) were edited and aligned using
the SeqScape v. 2.5 software (ABI; Weiterstadt, Germany).
We selected the best-fit substitution model by using
Bayesian information criterion 4 (BIC4) in a Kakusan4 soft-
ware package (Tanabe 2007): forCOII, we used J2 + G for the

first and second codon positions and J1 +G for the third codon
position; for EF-1α, we used HKY85 + G for the first and
third codon positions and JC69 + H for the second codon
position. We performed a maximum likelihood analysis by
using TREEFINDER version October 2008 software (Jobb
et al. 2004) and the substitution models selected above.
Clade support was assessed using 1000 bootstrap replications
by using TREEFINDER. ThemitochondrialCOII genetic dis-
tance was calculated using Kimura 2-Parameter (K2P) model
by using Mega7 (Kumar et al. 2016). Next, we identified host
plants and attending ants associated with each reconstructed
phylogenetic lineage. The mitochondrial (COII) haplotype
network estimated using the median-joining network (MJ)
method was constructed using PopART ver. 1.7 (Leigh and
Bryant 2015). To facilitate the understanding of the relation-
ship between Stomaphis aphids and host plants, we recon-
structed the character of host plant use on a haplotype
network.

Morphological identification

To identify aphid species on the basis of morphology,
we collected apterous viviparous or oviparous adult fe-
males from one or few Stomaphis colonies belonging to
each phylogenetic lineage or (if members of the lineage
used more than one host plant species) from each host
plant species. Each sample was immersed in 10% KOH
and encapsulated in a Canada balsam by using the
method of Kozarzhevskaya (1986). We identified mor-
phological species by referencing to taxonomic and bi-
ological traits (Inouye 1938; Takahashi 1960; Sorin
1965, 1979, 1995) and by measuring each part of the
aphid’s body under an optical microscope following the
key to Japanese Stomaphis species (Sorin 2012). All
slide samples are now in Matsumoto’s collection.

Results

Morphological identification

For measuring morphological features of Stomaphis aphids,
12 morphological species (S. abieticola, S. aceris,
S. aphananthae, S. fagi, S. hirukawai, S. japonica,
S. malloti, S. matsumotoi, S. pterocaryae, S. takahashii,
S. ulmicola, and S. yanonis), two subspecies (S. pini
takaoensis and S. yanonis aesculi), and three undescribed spe-
cies (Stomaphis spp. 1–3) were identified (Table S1). Of the
15 species and three subspecies described in Japan, three spe-
cies (S. alni, S. carpini, and S. pini) and one subspecies
(S. asiphon sakuratanii) were not available.
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Phylogeny of Stomaphis aphids

The combined sequence matrix used for phylogenetic recon-
struction was 1312 bp long. The collected Japanese Stomaphis
specimens were grouped into ten major DNA lineages (A to J)
with a COII genetic distance by K2P model greater than 0.03
(Fig. 1). Each DNA lineage was supported by a ML bootstrap
value with a probability of more than 70% and included one or
more p r ev ious l y desc r ibed spec i e s : l i neage A
(S. aphananthae, S. malloti, and S. yanonis); lineage B (sam-
ples for morphological identification could not be obtained);
lineage C (S. aceris and S. takahashii); lineage D
(S. pterocaryae, S. yanonis aesculi, and Stomaphis sp. 1);
lineage E (S. matsumotoi); lineage F (S. fagi); lineage G
(S. japonica and Stomaphis sp. 2); lineage H (S. abieticola,
S. japonica, S. pini takaoensis, and Stomaphis sp. 3); lineage I
(S. hirukawai); and lineage J (S. ulmicola). Lineages D and H
were subdivided into three and five sublineages, respectively,
according to host plant usage; each sublineage utilizes a dif-
ferent host plant species (Fig. 1). Because lineage B consisted
of a single sample, we refrain from discussing its relationship
to plants and ants.

Host plant use

Each of the five Stomaphis aphid lineages (C, E, F, I, and J)
used a single plant species as a host, whereas each of the other
four lineages (A, D, G, and H) used three or more host plant
species (Fig. 2, Table S2). Each sublineage in lineages D and
H (D-I, D-II, D-III, H-I, H-II, H-III, H-IV, and H-V), except H-
I, used a single host plant species. Host plant species mostly
did not overlap among the lineages or sublineages, except
between sublineages H-I and H-II. In all, the Stomaphis aphids
used 22 host plant species belonging to 15 genera, ten fami-
lies, and five orders, and the evolutionary host plant shift
associated with aphid speciation was overwhelmingly wide
(between orders; Table S2). To our knowledge, this is the first
study to document Betula ermanii, Picea jezoensis var.
hondoensis, Quercus crispula, and Q. dentata as host plant
species of Stomaphis aphids in Japan (Inouye 1938; Takahashi
1960; Sorin 1965, 1979, 1995, 2012).

Haplotype analysis

From the 160 COII sequences of Stomaphis aphids, a
total of 38 haplotypes were identified (Fig. 3). When
the lineages of each sample determined using molecular
phylogenetic analysis was reconstructed in the haplotype
network, each sample was integrated in the same group
as the lineages in the phylogenetic analysis (e.g., hap-
lotype group A corresponds to lineage A in molecular
phylogenetic analysis).
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Fig. 1 Maximum likelihood phylogenetic tree of Stomaphis aphid
samples based on mitochondrial COII and nuclear EF-1α sequences.
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parts shown in a and b. The tree shows ten major lineages (A to J).
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tional taxonomic unit. See Table S1 for details of the samples. The boot-
strap probability is shown for each node, and the scale indicates a nucle-
otide substitution rate of 0.05
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Some haplotypes were detected in haplotype groups C, E,
F, I, and J, and all haplotypes in these groups used single plant
species. In haplotype group A, seven haplotypes were

detected. The haplotypes A1, A4, and A5 used multiple plant
species. Conversely, haplotypes A2, A3, A6, and A7 used
single plant species, but these plant species overlapped with

96 90

96

90

88

92

98

71

95

67
89

91

54

97

66

82

64

99

64

94

 YM. 017 - S. japonica
S. quercisucta (Ref. 8)

YM. 034 - S. japonica

TY. 101

YM. 006 - S. hirukawai

TY. 117

TY. 093

TY. 123

S. pini (Ref. 9)

TY. 141 - S. japonica

Protrama flavescens (Ref. 16)

TY. 053

YM. 021

YM. 025

TY. 036

TY. 040

TY. 055
TY. 065

TY. 115

S. japonica (Ref. 7)

HM. 021

TK. 005

TY. 095

HS. 001

TY. 048

S. longirostris (Ref. 12)

HM. 022

Nippolachnus piri (Ref. 15)

TY. 098

TY. 107

TY. 099

TY. 034

TY. 105

YM. 001

TY. 042

TY. 106

HM. 005

TY. 147

Eulachnus brevpilosus (Ref. 14)

TY. 156

TY. 045

TY. 080

TY. 094

TK. 002

YM. 007

TY. 128
TY. 081

Cinara pinea (Ref. 13)

HM. 007

TY. 146 - S. japonica

Lachnus takahashii (Ref. 17)

TY. 096

YM. 027 - S. pini takaoensis

TY. 033

HM. 003

YM. 035

HM. 001

YM. 026

HM. 026

HM. 024

S. graffi (Ref. 11)

TY. 134

TY. 110

YM. 023

TY. 118

TY. 127

TK. 004

TY. 026 - S. japonica

TY. 135
YM. 015 - S. ulmicola

HM. 013

TY. 167

TY. 051

YM. 013 - S. hirukawai

TY. 109

TY. 136

TY. 039

TY. 151

S. quercus (Ref. 10)

YM. 051 - Stomaphis sp. 3

YM. 045 - Stomaphis sp. 2

YM. 014 - S. abieticola

0.05

Outgroup

Parastomaphis

G

H

J

I

H-I

H-II

H-III
H-IV

H-V

Continues from Fig. 1-(a)

96
90

71
100

96

90

98

78

96

88

92

98

71

95

62

67

72

79

89

91

95

85

99

54

74

97

94

66

82

82

64

99

64

83

94

51

61

53

83

61

52

0.05

(a)

(b)

(b)

Fig. 1 (continued)

Sci Nat          (2020) 107:14 Page 5 of 12    14 



other haplotypes in group A. In haplotype group D, six hap-
lotypes were detected. Each haplotype uses a single plant spe-
cies. In haplotype group G, one haplotype using multiple plant

species was detected. In haplotype group H, seven haplotypes
were detected. Except for haplotype H5, each haplotype used
a single plant species. Haplotype H5 used two plant species,
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one of which is the same species used by haplotypes H6 and
H7.

Mutualistic association with ants

All of the investigated Stomaphis aphid colonies were attended
by ant workers. Ants of genus Lasius were the most frequent
(97%; 150/154 aphid colonies; Tables S2 and S3). Considering
their COI nucleotide sequences, eight Lasius ant species belong-
ing to three subgenera (Lasius, Dendrolasius, and
Chthonolasius) were identified. Other observed attending ant
species were Camponotus obscuripes, Crematogaster sp., and
Polyrhachis lamellidens (Table S1).

The ant subgenus Lasius accounted for 61% (95/154 aphid
colonies) of all associated ants, and it was the most frequent
subgenus among ants associated with all Stomaphis aphid line-
ages except lineage J (N = 6; Fig. 2). The ant subgenus

Dendrolasius accounted for 29% (45/154) of all associated ants,
and ants of this subgenus attended aphids of five Stomaphis
lineages (A, E, G, H, and J). The ant subgenus Chthonolasius
accounted for 7% (11/154) of all associated ants and attended
aphids of six Stomaphis lineages (C, D, E, F, H, and J).

Discussion

Phylogenetic analysis of Stomaphis aphids and their relation-
ships with host plants and attending ants revealed that each
lineage and haplotype of Stomaphis aphids showed a high
degree of specificity to host plant species, and no species-
level host plant overlap was noted among lineages.
Conversely, almost all lineages of Stomaphis aphids were as-
sociated with two or more ant species. These findings suggest
that Stomaphis evolved and diversified owing to host plant
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shifts, whereas diversification rarely followed associated ant
shifts. In addition, most Stomaphis aphid lineages were asso-
ciated exclusively with ants of the genus Lasius, indicating
that the mutualism between Stomaphis and Lasius has been
very tight.

Species-specific host plant use in Stomaphis

Most of the DNA lineages and haplotypes of Stomaphis
aphids used a single plant species as host (Figs. 2 and 3). In
general, aphids have high specificity to their host plants be-
cause of the need to adapt and specialize to plant species-
specific traits such as nutrient composition, defense systems
(external morphology and secondary metabolites), and phe-
nology (Dixon 1998; Peccoud et al. 2010). Stomaphis aphids
can also benefit by adapting physiologically, morphologically,
and ecologically to plant species-specific traits. Thus, like oth-
er phytophagous insects (War et al. 2012), Stomaphis aphids
may exhibit a pattern of specificity for a particular plant
species.

Evolution of host plant use in Stomaphis

Stomaphis aphids use a phylogenetically broad range of host
plants. In Japan, their host plants belong to ten families in five
orders (Table S2); globally, their host plants belong to 13
families in seven orders (Blackman and Eastop 2019). A con-
spicuous result of this study is that, in Japan, host plant shifts
of Stomaphis aphids have occurred between taxa that are
widely separated phylogenetically. Phylogenetic constraints
on host plant utilization by aphids usually occur, and many
aphid genera or families are associated strictly with a single
plant genus or family (Peccoud et al. 2010). Because plant
phenology, chemical compounds, and nutritional value are
similar among closely related host plant species (Prasad
et al. 2012; Davies et al. 2013), host shifts by aphids may
occur only between plants belonging to, for example, a single
genus. For example, conifer-feeding aphids of the genus
Cinara, belonging to the same subfamily, Lachninae, as the
genus Stomaphis, comprise as many as 250 species world-
wide, all of which use host plants belonging to three families
(Pinaceae, Cupressaceae, and Taxaceae) in the order Pinales
(Blackman and Eastop 2019). Thus, the phylogenetic breadth
of host plants used by the Stomaphis aphids in our study is
clearly different from the general pattern of aphid diversifica-
tion. Moreover, this host plant use pattern probably does not
reflect the extinction of intermediate lineages, because rela-
tively closely related aphid lineages, such as the sublineages in
D and H, show host shifts to distantly related plant taxa. For
example, within lineage D, the sublineages reflect host shifts
from Pterocarya and Betula (Fagales) to Aesculus
(Sapindales; Fig. 1 and Table S2).

Similar evolutionary host shifting by phloem sap feeders
has been shown in the treehopper Enchenopa binotata species
complex; each host lineage in this complex is specific to a
single plant species, but together the host lineages use various
plant taxa (Wood and Guttman 1983). Wood and Guttman
(1983) inferred that this pattern reflects, first, fidelity to a
single plant species, which arises because specialization on a
particular plant species is advantageous for each host lineage;
second, a release from phylogenetic constraints that enables
the occurrence of shifts between distantly related plant species
(Wood and Keese 1990; Wood 1993; Hsu et al. 2018).

As noted above, specializing physiologically, morphologi-
cally, and ecologically to a single host plant species is advan-
tageous for Stomaphis aphids. Subsequently, they may release
from phylogenetic constraints such as nutrient value, defense
systems, and phenology of plant species. In lineage H, host
shift was noted between angiosperm (Abies) and gymnosperm
(Quercus) trees. The nutrient value, secondary metabolite
composition, and bark morphology differed between the two
groups. For example, Abies tree has the resin composed of
terpenes, which may be assumed to be considerably toxic
for insects, and Stomaphis aphids must overcome this toxic
resin when they use Abies tree as their host. Therefore, the
acquisition of novel host plants for Stomaphis aphids may
not be restricted strongly by plant physiological and morpho-
logical traits. In addition, because the tree trunk stores large
amounts of nutrients throughout the season, Stomaphis aphids
can use the phloem sap and survive even in winter (Depa
2013; Depa et al. 2015b). That is, seasonal variations of nu-
trients does not affect Stomaphis aphids; in contrast, almost all
other aphid species need to ecologically adapt to seasonal
variations of nutrients (e.g., host alternation, aestivation, and
galling). Therefore, when Stomaphis aphids switch to novel
host plants, they may not be threatened by the differences of
plant phenology, thereby weakening the phylogenetic con-
straints for the availability of plant use.

Does strong dependence on ant mutualism affect
the pattern of plant use?

Stomaphis aphids have a sedentary life mode, possibly be-
cause of their large body size, which is necessary for sucking
phloem sap from tree trunks and consequent low dispersal
ability. This sedentary life mode leads in turn to their strong
dependence on ant mutualism (Depa et al. 2015a). Moreover,
their sedentary life mode suggests that gene flow between
aphids on different host plants would be extremely low, which
would promote disruptive selection. As in the treehopper
E. binotata species complex (Wood and Guttman 1983), a
sedentary life mode owing to their dependence on ant mutu-
alismmay be one of the factors promoting disruptive selection
in Homoptera by using different host plants (Wood 1982,
1987). Moreover, Depa et al. (2017) showed that more
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sedentary species of Stomaphis exhibit greater genetic varia-
tion and use a broader range of host plant taxa than less sed-
entary sister species found in the same area.

Depa et al. (2017) have shown that Stomaphis aphids can
be accidentally transferred to neighboring tree species by at-
tending ants. The results of this study also suggest that
Stomaphis aphids might have dispersed in this manner. If
transfer by attending ants occurs, then “generalist”
Stomaphis species might use host plant species that, although
distantly related taxonomically, have similar environmental
preferences and are distributed sympatrically. Indeed, al-
though the four host plant species used by Stomaphis lineage
A belong to three different plant families, they all are found in
a sunny, dry, and lowland forest edge environment. Similarly,
the three host plant species used by Stomaphis lineage D be-
long to three different plant families, but grow in moist moun-
tain forest environments. Determination of the factors that
have led Stomaphis aphids to shift to distantly related host
plants and their consequent evolutionary diversification is a
topic for future studies. Such studies would allow us to gain
insights into the mechanisms for the diversification of phy-
tophagous insects.

Evolution of mutualistic ant association in Stomaphis

In this study, most Stomaphis colonies were associated with
ants of the genus Lasius (Fig. 2), suggesting that mutualism
with Lasius ants is important for the survival of Stomaphis
aphids. Lasius ants usually nest at the base of trees
(Terayama et al. 2014); hence, Stomaphis aphids living on tree
trunks may be more likely to encounter Lasius ants than ants
of other genera. In addition, Lasius worker ants walk up tree
trunks in large numbers to collect food resources high up on
the tree (Terayama et al. 2014); therefore, they can easily
defend aphids living on the tree trunks against their natural
enemies. Moreover, Lasius ant colonies persist for long pe-
riods of several years or more (Matsuura and Yashiro 2006),
which enhances their ability to act as a stable partner of sed-
entary Stomaphis aphids. The strong defense provided to
Stomaphis aphids by Lasius ants can compensate for the
aphids’ low escape ability owing to their large body and long
proboscis. Future investigations of survival and reproduction
rate differences between Stomaphis colonies associated with
Lasius and those associated other ant taxa should provide
further insight into the evolution of this aphid–ant mutualism.

A high proportion of aphid colonies in the Stomaphis
lineages were attended by ants of the subgenus Lasius
(Fig. 2), which are among the most common ants in
Japan and occur in a wide range of environments from
bare land to forest (Terayama et al. 2014). In addition,
Matsuura and Yashiro (2006) reported that ants of the
subgenus Lasius build shelters made of soil over
Stomaphis aphid colonies on tree trunks and protect

Stomaphis aphid eggs in their nests during the winter.
These ant behaviors suggest that ants of this subgenus
are among the most useful mutualistic partners for
Stomaphis.

Aphids of several lineages were attended by ants of the
subgenus Dendrolasius in relatively low proportion.
Establishment of a mutualistic association between
Stomaphis aphids and ants of the subgenus Dendrolasius
might be difficult. The morphological traits of the European
aphid S. quercus (dark, slender, shiny body, and a strong de-
gree of cuticle sclerotization) make them inconspicuous to
natural enemies and tolerant of a harsh environment and also
well adapted to Dendrolasius ant protection, because these
ants do not build shelters over Stomaphis aphid colonies on
tree trunks, but directly attend the aphids (Depa et al. 2017). In
our survey, we found many Dendrolasius ant colonies in
Tokamachi, Niigata Prefecture; however, although aphid col-
onies of lineage A (TY.089) were attended by Dendrolasius
ants, those of lineage F observed in this area (TY.083, TY.084,
TY.085, TY.091, and TY.092) were not. In addition, morpho-
logically, S. yanonis (lineage A) are dark and slender, but
S. fagi (lineage F) are white and round (Matsumoto 2008).
These facts suggest that only species such as S. yanonis and
S. quercus, which have acquired certain morphological traits,
can associate with the ant subgenus Dendrolasius. In the fu-
ture, investigation of the comparative morphology of many
Stomaphis species in relation to their associated attending
ant species would likely reveal the ant mutualism-related ad-
aptations in Stomaphis.

Species specificity to the associated ant species has been
reported in many obligate ant mutualisms (e.g., between ants
and plants (Quek et al. 2004), or ants and Lycaenid butterflies
(Pierce et al. 2002)). In Stomaphis aphids, Depa et al. (2017)
reported one example where speciation was apparently driven
by ant–aphid interactions. However, the Stomaphis lineages
identified in this study were not associated with specific ant
species. Endo and Itino (2012) showed that S. yanonis (line-
age A in this study) successfully avoids attack and maintains
its intimate relationship with its attending ant species, Lasius
fuji, by having cuticular hydrocarbons similar to those of
L. fuji worker ants. This finding suggests that S. yanonis is
adapted to a specific attending ant species. However, colonies
in lineage Awere associated with not only L. fuji but also other
ant species; one explanation may be that S. yanonis adapt
locally to different ant species by changing their cuticular
hydrocarbon, in areas where the density of L. fuji ants is low.

Classification of Stomaphis

Until recently, aphids of the genus Stomaphis were classi-
fied on the basis of their morphological characteristics,
although, in some cases, the morphological classification
of Stomaphis has been modified on the basis of
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phylogenetic relationships reconstructed using genetic
markers (Depa and Mróz 2013). The molecular phylogeny
of Stomaphis in Japan reconstructed in this study differed
in part from the morphological classification, suggesting
that the classification of some Japanese species, for exam-
ple, of lineages A, D, G, and H, should be revised.
However, no colonies of S. alni and S. carpini, other
Stomaphis species that have been described in Japan
(Sorin 1965), were sampled in this study. Therefore, more
extensive sampling and more detailed morphological and
ecological information are necessary to classify accurately
Japanese Stomaphis.

In particular, Takada (2008) conducted fragmentary obser-
vations over 10 years and indicated that S. japonica may al-
ternate hosts between Quercus serrata as primary and
Quercus acutissima as secondary, although such host alterna-
tion is rare in Lachninae. In this study, the aphids using
Q. serrata and Q. acutissima as host belonged to different
lineages (lineages G and H). Stomaphis aphids on
Q. acutissima certainly alternate their hosts because they fly
away fromQ. acutissima during winter. Therefore, Stomaphis
aphids on Q. serrata and Q. acutissima might be different
species, and aphids using Q. acutissima might have different
primary host plants. Although a previous study was conducted
in Kyoto (Takada 2008), we could not cover this area. Further
investigation of the morphology and life history of lineages G
and H in a wide area is needed to reveal the host alternation in
Stomaphis.
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